
Four	Methods	to	Calculate	Gravitational	Time	Dilation	
	
Here	are	four	different	ways	to	calculate	the	time	dilation	caused	by	a	uniform	gravitational	field.	
They	all	arrive	at	the	same	approximation	of	the	scale	factor:	
	

1+
𝑔 ∙ ℎ
𝑐! 	

	
Here	are	the	four	approaches:	
	

1. The	first	method	is	the	simplest,	relying	on	the	basic	equations	of	motion	and	the	Doppler	
effect	to	calculate	how	quickly	photons	will	arrive	at	the	bottom	of	a	gravitational	field.	

	
2. The	second	method	was	adapted	from	the	presentation	by	Cristian,	which	uses	

gravitational	potential	energy.	I	start	by	converting	the	equation	for	gravitational	
potential	energy	to	use	the	initial	energy	of	the	photon,	rather	than	rely	on	the	
problematic	concept	of	its	mass.	

	
	

3. The	third	method	starts	with	an	object	on	the	surface	of	the	Earth,	subject	to	its	
gravitational	field.	It	sets	the	gravitational	potential	energy	equal	to	the	kinetic	energy,	
using	the	escape	velocity.	It	then	applies	the	standard	Lorentz	Transform	to	that	velocity.	

	
4. The	fourth	section	is	a	summary	of	calculating	uniform	acceleration	using	a	Minkowski	

space-time	diagram.	The	scale	factor	appears	in	the	equation	of	the	accelerated	trajectory.	
I	can	make	a	full	calculation	available	if	anybody	want	to	see	it.	

	 	



Time	Dilation	from	the	Doppler	Effect	
	
The	equivalence	principle	in	general	relativity	tells	us	that	acceleration	
is	the	equivalent	to	experiencing	a	uniform	gravitational	field	that	
exists	throughout	the	universe,	coming	from	the	direction	of	motion,	
for	the	time	period	of	the	acceleration.	
	
A	rocket	with	a	height	 ℎ 	accelerating	upward	at	 𝑔 	is	equivalent	to	
being	stationary	in	a	uniform	downward	gravitational	field.	Light	is	
regularly	pulsing	from	a	source	at	the	top,	and	travelling	to	the	
bottom.	The	time	the	light	takes	to	reach	the	bottom	(when	not	
accelerating)	is:	

𝑡 =
ℎ
𝑐 	

	
The	additional	velocity	(assuming	𝑣! = 0)	of	the	accelerating	rocket	
after	time	𝑡	is:	

𝑣! = 𝑣! + 𝑔 ∙ 𝑡 = 𝑔 ∙
ℎ
𝑐 	

	
The	bottom	of	the	rocket	is	moving	toward	the	oncoming	light	pulses,	
so	they	will	get	closer	together,	meaning	the	frequency	will	increase.	The	frequency	represents	
the	speed	of	the	clock.	We	are	observing	the	frequency	of	the	clock	at	the	top	of	the	gravitational	
field,	which	seems	to	be	running	quickly.	Therefore	the	clock	at	the	bottom	appears	to	be	
running	slowly.	
	
This	frequency	can	be	found	using	the	Doppler	equation.	(It	is	only	valid	at	a	velocity	much	
smaller	than	the	speed	of	light,	so	this	equation	is	not	universally	valid.)	
	

𝑓! = 𝑓! ∙
𝑐 + 𝑣!
𝑐 + 0 = 𝑓! ∙ 1+

𝑣!
𝑐 	

	
But	we	can	calculate	velocity	𝑣!	from	the	acceleration	and	height	of	the	rocket:	
	

𝑓! = 𝑓! ∙ 1+
𝑣!
𝑐 = 𝑓! ∙ 1+ 𝑔 ∙

ℎ
𝑐 ∙
1
𝑐 	

	
Therefore,	given	that	we	measure	time	by	the	rate	the	light	pulses	arrive:	
	

𝑓! = 𝑓! ∙ 1+
𝑔 ∙ ℎ
𝑐!      ⇒      𝑇! = 𝑇! ∙ 1+

𝑔 ∙ ℎ
𝑐! 	

	 	

	



Time	Dilation	from	Gravitational	Potential	Energy	
	
We	have	a	photon,	moving	at	the	speed	of	light,	at	the	top	of	a	
gravitational	field.	The	initial	energy	of	the	photon	is	proportional	
(by	Planck’s	constant	ℎ)	to	its	frequency:	
	

𝐸! = ℎ ∙ 𝑓!	
	
The	photon	travels	to	the	bottom	of	the	gravitational	field,	which	
raises	its	energy	causing	it	to	become	blue-shifted,	with	a	shorter	
wavelength	and	a	higher	frequency:	
	

𝐸! = ℎ ∙ 𝑓!	
	
Gravitational	potential	energy	 ∆𝐸 	is	the	difference	between	the	
energy	at	the	top	and	bottom	(height	=	𝐻)	of	the	gravitational	field	
(acceleration	=	𝑔).	It	is	usually	defined	in	terms	of	mass:	
	

∆𝐸 = 𝑚 ∙ 𝑔 ∙ 𝐻	
	
Photons	do	not	really	have	mass.	We	can	avoid	problems	with	relativistic	mass	by	re-writing	this	
equation	in	terms	of	energy,	based	on	the	relationship	𝐸 = 𝑚 ∙ 𝑐!	using	the	energy	at	the	top	of	
the	field:	

∆𝐸 =
𝐸!
𝑐! ∙ 𝑔 ∙ 𝐻	

	
The	energy	at	the	bottom	is	equal	to	the	energy	at	the	top	plus	the	gravitational	potential	energy:	

𝐸! = 𝐸! + ∆𝐸 = 𝐸! +
𝐸!
𝑐! ∙ 𝑔 ∙ 𝐻	

	
From	this	we	calculate	the	ratio	of	the	two	energy	values	by	dividing	through	by	𝐸!:	
	

𝐸!
𝐸!
=
𝐸!
𝐸!
+

𝐸!
𝐸! ∙ 𝑐!

∙ 𝑔 ∙ 𝐻 = 1+
𝑔 ∙ 𝐻
𝑐! 	

	
We	now	convert	the	energy	into	frequency.	Planck’s	constant	cancels	out,	so	this	result	does	not	
depend	on	quantum	theory,	only	on	the	fact	that	energy	is	proportional	to	frequency:	

𝐸!
𝐸!
=
ℎ ∙ 𝑓!
ℎ ∙ 𝑓!

= 1+
𝑔 ∙ 𝐻
𝑐! 	

	
We	can	think	of	the	frequency	as	how	frequently	the	photons	arrive,	which	are	equivalent	to	
clock	ticks.	Therefore	the	ratio	of	the	frequencies	is	the	factor	by	which	time	slows	down	in	a	
gravitational	field:	
	

𝑓!
𝑓!
= 1+

𝑔 ∙ 𝐻
𝑐! 	

	 	

	



Time	Dilation	Caused	by	the	Earth’s	Gravitational	Field	
	
In	general	relativity,	time	slows	down	in	a	gravitational	field.	An	object	(mass	=	𝑚)	at	a	distance	
of	𝑅	from	the	center	of	the	Earth	has	a	potential	energy	that	depends	on	the	mass	of	the	Earth	
(𝑀!)	and	that	distance.	We	can	equate	that	to	the	kinetic	energy	of	the	object:	
	

𝐺 ∙𝑀! ∙𝑚
𝑅 =

1
2 ∙𝑚 ∙ 𝑣!!	

	
But	what	is	this	velocity,	given	that	the	motion	of	the	object	is	irrelevant	to	this	calculation?	The	
equivalence	principle	states	that	there	is	no	difference	between	a	body	experiencing	a	
gravitational	field	or	uniform	acceleration.	This	velocity	is	called	the	equivalent	gravitational	
velocity	(𝑣!),	which	is	the	same	as	the	escape	velocity:	
	

𝑣! =
2 ∙ 𝐺 ∙𝑀!

𝑅 	

	
We	can	now	calculate	the	time	dilation	at	this	velocity	using	the	standard	Lorentz	
Transformation	from	Special	Relativity.	
	

𝑇! =
𝑇!

1−
𝑣!!
𝑐!

=
𝑇!

1− 2 ∙𝑀! ∙ 𝐺
𝑅 ∙ 𝑐!

	

	
The	acceleration	at	a	particular	radius	can	be	found	by	equating	the	force	of	that	acceleration	to	
that	of	the	universal	gravitational	equation:	
	

𝑚 ∙ 𝑔 = 𝐺 ∙
𝑚 ∙𝑀!

𝑅!      ⇒      𝑔 = 𝐺 ∙
𝑀!

𝑅! 	
	
We	can	therefore	write	the	time	dilation	in	terms	of	a	particular	uniform	acceleration:	
	

𝑇! =
𝑇!

1− 2 ∙𝑀! ∙ 𝐺
𝑅 ∙ 𝑐!

=
𝑇!

1− 2 ∙ 𝑔 ∙ 𝑅𝑐!

	

	
Use	a	Taylor	expansion	to	approximate	the	scaling	factor.	We	can	drop	the	exponential	terms	
because	those	involve	dividing	by	powers	of	the	square	of	the	speed	of	light:	
	

1+ 𝑥 ! = 1+
𝑎
1! ∙ 𝑥 +

𝑎 ∙ 𝑎 − 1
2! ∙ 𝑥! +⋯	

	

𝑇! =
1

1− 2 ∙ 𝑔 ∙ 𝑅𝑐!

= 1+ −
2 ∙ 𝑔 ∙ 𝑅
𝑐!

!!!
= 1+ −

1
2 ∙ −

2 ∙ 𝑔 ∙ 𝑅
𝑐! = 𝟏+

𝒈 ∙ 𝑹
𝒄𝟐 	

	
	



Summary	of	Acceleration	in	Minkowski	Space-Time	
	
A	spacecraft	starts	at	rest	at	Event	O	 0,0 	in	the	frame	of	reference	defined	by	the	𝒄𝒕𝟎	and	𝒙𝟎	
axes.	It	is	then	subjected	to	a	constant	proper	acceleration	𝑔,	as	measured	in	the	spacecraft’s	
moving	frame	of	reference.	A	stationary	observer	sees	the	spacecraft’s	time,	and	therefore	also	
its	co-ordinate	acceleration,	slowing	down.	
	
At	time	𝑡 = 1,	it	has	reached	Event	A	and	now	has	a	velocity	defined	by	vector	 𝒄𝒕𝟏 .	It	is	
therefore	in	the	frame	of	reference	defined	by	the	𝒄𝒕𝟏	and	𝒙𝟏	axes.	As	it	continues	to	accelerate	
the	angle	between	the	axes	becomes	smaller	as	its	velocity	gets	larger.	
	

	
	
The	position	of	each	event	along	the	world	line	of	the	accelerating	spacecraft	forms	a	hyperbola	
that	passes	through	the	origin.	Its	equation	contains	the	time	dilation	factor.	Note	how	the	
acceleration	trajectory	follows	the	hyperbolic	shape	of	space-time.		
	
At	each	position	along	the	trajectory,	the	velocity	is	the	tangent	line	to	the	hyperbola.	The	
corresponding	x-axis	represents	all	the	events	that	have	the	same	time,	in	that	frame	of	
reference.	Those	axes	all	converge	on	Event	P,	meaning	that	Event	P	is	always	“now”	along	the	
entire	trajectory.	From	the	spacecraft	point	of	view,	time	stands	still	at	Event	P.	The	asymptotes	
of	the	event	horizon	converge	at	P,	so	the	space-time	accessible	to	the	spacecraft	approaches	
zero.	
	
Because	the	apparent	length	contraction	in	each	frame	of	reference	gets	larger	as	the	spacecraft	
moves	faster,	the	distance	between	the	particle	at	every	point	along	the	trajectory	and	Event	P	
remains	constant	(in	the	moving	frame	of	reference).	
	

Derived	from:	http://www.personal.kent.edu/~fwilliam/Chapter%2013%20General%20Relativity.pdf	
and:	https://arxiv.org/pdf/physics/0601179.pdf	
YouTube	video:	https://www.youtube.com/watch?v=Bb3MueZRIko&frags=pl%2Cwn	
	


