
Space	and	Time	in	Special	Relativity	

The	Speed	of	Light	is	Constant	in	Every	Frame	of	Reference	
	
Measure	a	Light	Beam	Inside	the	Train	
	
Start	with	the	perspective	of	a	passenger	on	a	train	car	(height	=	𝑠).	A	light	is	flashed	
from	its	source	on	the	floor	at	A,	and	reaches	a	detector	on	the	ceiling	above	it	at	B.	
The	light	will	take	a	certain	time	=	𝑡!	to	reach	it.	Therefore	the	length	traversed	by	
the	light	beam	is:	𝑠 = 𝑐 ∙ 𝑡!.	
	

	
	
Measure	the	Same	Light	Beam	from	Outside	the	Moving	Train	
	
Now	consider	the	perspective	of	an	observer	watching	the	train	in	motion	toward	
the	right	at	a	constant	velocity	=	𝑣! .	The	light	beam	starts	at	Event	A	as	before.	But	it	
will	follow	a	diagonal	path	to	reach	the	detector	at	Event	B’	at	the	center	of	the	car	
in	its	new	position.	The	detector	travelled	a	horizontal	distance	=	𝑥!	from	its	original	
position	at	B.	
	
As	the	speed	of	light	must	be	constant	in	every	frame	of	reference,	from	outside	the	
train	the	observer	must	perceive	it	to	take	a	longer	time	=	𝑡!	to	travel	the	longer	
distance	from	A	to	B’.		
	
This	is	the	same	light	beam	as	seen	from	inside	the	train,	which	means	that	B	and	B’	
are	the	same	physical	event.	The	passenger	and	the	observer	perceive	them	to	be	
different.	Times	𝑡!	and	𝑡!	are	measured	in	different	frames	of	reference.	The	
Pythagoras	theorem	tells	us	that:	
	

𝑐 ∙ 𝑡! ! = 𝑐 ∙ 𝑡! ! − 𝑥!!	
	
If	we	imagine	the	horizontal	dashed	lines	to	be	clock	ticks,	the	ticks	are	longer	as	
seen	from	the	moving	frame	of	reference.	That	means	we	perceive	that	time	on	the	
train	has	slowed	down	compared	to	our	time	outside.	
	



Calculate	the	Invariance	of	the	Interval	
	
When	the	train	is	standing	still,	the	passenger	measures	the	length	of	the	light	beam	
path	as	𝑠 = 𝑐 ∙ 𝑡!.	This	is	the	same	as	the	height	of	the	train.	It	follows	that:	
	

𝑠! = 𝑐 ∙ 𝑡! !	
	
When	the	train	is	moving	the	observer	measures	the	length	of	path	of	the	light	beam	
as	𝑐 ∙ 𝑡!.	Given	that	it	also	travelled	a	horizontal	distance	of	𝑥!,	the	height	of	the	train	
can	be	calculated	using	the	Pythagorean	theorem:	
	

𝑠! = 𝑐 ∙ 𝑡! ! − 𝑥!!	
	
The	value	of	𝒔	is	the	height	of	the	train,	and	will	be	the	same	no	matter	how	fast	(or	
for	any	𝑥)	the	train	is	moving.	We	say	the	height	of	the	train	is	invariant,	meaning	it	
is	the	same	in	every	frame	of	reference.		
	
We	can	use	this	equation	to	plot	all	the	possible	combinations	of	events	in	space	and	
time	(𝑥! 	and	𝑡!)	that	are	the	same	distance	apart,	on	a	space-time	diagram.	It	takes	
the	form	of	a	hyperbola	that	approaches	but	never	reaches	the	speed	of	light.	If	we	
use	𝑦	for	the	time	direction,	the	equation	looks	like:	
	

𝑦! − 𝑥! = 𝑠!	
	

The	Geometry	of	a	Hyperbola	
	
The	general	equation	for	a	hyperbola	that	intersects	the	y-axis	at	a,	around	lines	
with	a	slope	of	 𝑎𝑏		is:	
	

𝑦!

𝑎!
−
𝑥!

𝑏!
= 1	

	
If	𝑎 = 𝑏,	the	hyperbola	will	approach	but	
never	reach	the	45° line,	and	the	equation	
can	be	represented	as:	
	

𝑦! − 𝑥! = 𝑎!	
	
	
	 	

	



The	Invariant	Interval	on	a	Space-Time	Diagram	
	
We	construct	a	space-time	diagram	by	choosing	the	
perspective	of	one	inertial	frame	of	reference,	which	is	
considered	to	be	standing	still.,	while	the	diagram	on	the	
right	is	the	perspective	as	seen	by	the	observer	on	the	
platform.	
	
The	first	diagram	is	from	the	perspective	of	the	passenger	
on	the	train	moving	toward	the	right.	The	passenger	sees	
the	train	as	standing	still	in	space,	moving	upward	through	
time.	The	outside	observer	is	moving	backwards,	or	toward	
the	left.	The	light	beam	follows	the	path	from	Event	A	at	
0,0 	to	Event	B	at	 0, 𝑡! ,	which	is	a	distance	of:	
	

𝑠! = 𝑐 ∙ 𝑡! !	
	
	
The	outside	observer	sees	the	train	moving	toward	the	
right.	The	light	beam	still	follows	the	path	from	Event	A	at	
0,0 	to	Event	B.	There	is	only	one	Event	B,	but	the	
observer	sees	it	in	a	different	position,	at	 𝑥!, 𝑡! .	This	
space-time	distance	the	light	travelled	is:	
	

𝑠! = 𝑐 ∙ 𝑡! ! − 𝑥!!	
	
This	must	be	the	same	distance	in	space-time	as	seen	by	
the	train	passenger.	This	can	only	be	true	if	the	observer	
sees	time	running	slower	on	the	train.	
	
As	the	train	goes	faster,	the	space-time	interval	will	be	the	
same	along	the	hyperbola.	At	Event	B”,	time	on	the	train	
will	be	running	even	slower.	
	
We	must	remember	that	these	graphs	describe	a	hyperbolic	space,	not	a	Euclidean	
space.	A	distance	measured	on	the	graph	is	not	the	same	as	the	real	distance	in	the	
underlying	space.	Although	the	space-time	interval	lines	that	join	the	hyperbola	look	
like	they	have	different	lengths,	they	are	in	fact	all	the	same	length.	
	
	
	
	
	 	

	

	

	



Calculate	the	Lorentz	Factor	from	the	Space-Time	Interval	
	
Now	we	will	derive	the	Lorentz	factor	to	show	how	time	is	stretched	by	relative	
motion.	The	train	is	travelling	horizontally	at	velocity	=	𝒗𝒙	during	the	time	𝒕𝟏	to	
cover	distance	𝒙𝟏.	We	can	equate	the	space-time	intervals	for	the	stationary	and	
moving	trains:	

𝑐 ∙ 𝑡! ! = 𝑐 ∙ 𝑡! ! − 𝒙𝟏!	
	
Convert	the	distance	into	velocity	multiplied	by	time:	𝒙𝟏 = 𝒗𝒙 ∙ 𝒕𝟏.	Then	substitute	
this	back	into	the	space-time	interval:	
	

𝑐 ∙ 𝑡! ! = 𝑐 ∙ 𝑡! ! − 𝒗𝒙 ∙ 𝒕𝟏 !	
Factor	out	𝑡!:	

𝑐 ∙ 𝑡! ! = 𝑡!! ∙ 𝑐! − 𝑣!! 	
Solve	for	𝑡!:	

𝑡!! =
𝑐 ∙ 𝑡! !

𝑐! − 𝑣!!
	

Find	the	ratio	of	𝑡!	to	𝑡!:	
	

𝑡! = 𝑡! ∙
𝑐!

𝑐! − 𝑣!!
= 𝑡! ∙

1

𝑐! − 𝑣!!
𝑐!

= 𝑡! ∙
1

1− 𝑣!
!

𝑐!

	

	
We	can	now	express	the	relationship	between	times	in	different	frames	of	reference	
in	terms	of	the	Lorentz	Factor:	

𝑡! = 𝑡! ∙
𝟏

𝟏− 𝒗𝒙
𝟐

𝒄𝟐

= 𝑡! ∙ 𝜸	

	
To	show	how	the	Lorentz	Factor	has	little	
effect	until	you	approach	the	speed	of	
light,	we	plot	the	graph	of	the	equation:	
	

𝑦 =
1

1− 𝑣!
10!

	

	
The	velocity	𝑣	is	along	the	x-axis,	while	its	
effect	on	time	is	along	the	y-axis.	The	
speed	of	light	is	arbitrarily	set	to	10.	
	
	
	 	

	

𝛾 =
1

!1 − 𝑣
!

𝑐!

	



The	Space-time	Interval	is	Shorter	than	the	Time	Interval	
	
The	time	vector	 𝑐𝑡 	is	the	sum	of	the	space	vector	 𝑥 	plus	the	space-time	vector	
𝑠 .	That	means	the	space-time	vector	must	always	be	shorter	than	the	time	vector:	
	

𝑠! = 𝑐𝑡 ! − 𝑥!     or     𝑐𝑡 ! = 𝑥! + 𝑠!	
	
Divide	through	by	𝑐!,	replace	the	distance	with	𝑥 − 𝑣𝑡,	and	express	in	terms	of	𝛾.	We	
can	express	the	space-time	interval	as	a	factor	of	the	time	interval:	
	

𝑠!

𝑐! =
𝑐𝑡 ! − 𝑣𝑡 !

𝑐! = 𝑡! ∙
𝑐! − 𝑣!

𝑐! = 𝑡! ∙ 1−
𝑣!

𝑐! =
𝑡!

𝛾!      ⇒      𝒔 =
𝒄𝒕
𝜸 	

	
On	the	left,	the	observer	has	not	moved	in	space,	but	travelled	𝑐𝑡	through	the	time	
dimension.	This	is	the	same	as	the	space-time	interval	𝑠.	In	the	middle,	a	spaceship	
has	travelled	a	distance	𝑥	through	space	during	the	same	time	interval	𝑐𝑡.	The	
space-time	interval	𝑠!	is	smaller	(by	a	factor	of	𝛾)	than	before.	On	the	right,	the	
spaceship	travels	twice	as	far	during	the	same	time	interval.	That	means	it	travelled	
faster.	We	can	see	that	as	the	ship	travels	faster,	the	interval	that	it	travels	through	
space-time	gets	shorter.	
	

	
	
Next,	divide	by	time	to	get	the	velocity	relationship	then	multiply	all	three	sides	by	
gamma.	We	are	always	moving	through	space-time	at	the	invariant	speed	of	light.	
We	can	only	adjust	our	relative	speeds	through	separate	space	and	time.	
	

	

𝑠
𝑡 =

𝑐 ∙ 𝑡
𝛾 ∙ 𝑡 =

𝑐
𝛾	

	
𝑐𝑡
𝑡 = 𝑐	
	

𝑥
𝑡 = 𝑣	

	 	
	


