
Test	Flight	Problem	Set	
	
(1)	Say	whether	the	following	is	true	or	false	and	support	your	answer	by	a	
proof:		(∃m	∈ 	N)(∃n	∈ 	N)(3m+5n	=	12)	
	
I	will	use	basic	algebra	to	demonstrate	that	there	are	no	integer	solutions	for	this	
statement.	
	
First,	solve	the	equation	in	terms	of	𝑚:	 3𝑚 = 12− 5𝑛	
	
Because	we	are	working	with	natural	numbers,	there	are	only	two	possible	values	of	
𝑛:	1	and	2.	That	means	either:	
	

3𝑚 = 12− 5	
3𝑚 = 7	

or	 3𝑚 = 12− 10	
3𝑚 = 2	

	
There	are	no	natural	numbers	that	satisfy	either	of	these	two	results.	Therefore	
there	are	no	natural	numbers	𝑚	and	𝑛	that	satisfy	the	original	equation.	
	
The	proposed	statement	is	false,	as	was	proven	by	algebraic	manipulation	of	the	
equation.	∎	
	
	
(2)	Say	whether	the	following	is	true	or	false	and	support	your	answer	by	a	
proof:	The	sum	of	any	five	consecutive	integers	is	divisible	by	5	(without	
remainder).	
	
Symbolic	statement:		 ∀𝑎 ∈ ℤ  5 | 𝑎 +  𝑎 + 1 +  𝑎 + 2 +  𝑎 + 3 +  𝑎 + 4 	
	
This	statement	can	be	proven	by	simple	algebra.	Collect	the	terms:	
	

𝑎 +  𝑎 + 1 +  𝑎 + 2 +  𝑎 + 3 +  𝑎 + 4 = 5𝑎 + 10	
	
Extract	the	common	factor:	

5𝑎 + 10 = 5 𝑎 + 2 	
	
As	 𝑎 + 2 	is	always	an	integer, 5 𝑎 + 2 	is	by	definition	always	an	integer	multiple	
of	five.	
	
Therefore	the	sum	of	any	five	consecutive	integers	must	always	be	evenly	divisible	
by	five.	∎		
	 	



(3)	Say	whether	the	following	is	true	or	false	and	support	your	answer	by	a	
proof:	For	any	integer	n,	the	number	n2	+n+1	is	odd.	
	
Symbolic	statement:	 ∀𝑛 ∈ ℤ ∃𝑥 ∈ ℤ 𝑛! + 𝑛 + 1 = 2𝑥 + 1 	
	
I	will	show	this	is	true	by	using	a	proof	by	contradiction.	
	
Assume	there	is	an	even	solution.	Then,	for	all	integers	𝑛,	there	must	exist	some	
integer	𝑝	such	that:	

𝑛! + 𝑛 + 1 = 2𝑝	
Collect	the	𝑛	terms:	

𝑛! + 𝑛 = 2𝑝 − 1	
Factor:	

𝑛 𝑛 + 1 = 2𝑝 − 1	
	
The	left	side	is	the	product	of	two	consecutive	integers,	one	of	which	must	be	an	
even	number.	Therefore	their	product	is	even.	
	
The	right	side	is,	by	definition,	an	odd	number.	
	
As	an	even	number	cannot	equal	an	odd	number,	we	have	shown	there	are	no	
solutions	for	our	proposed	equation	that	assumes	there	is	an	even	solution.	As	there	
are	no	even	solutions,	all	possible	solutions	must	therefore	be	odd.	
	
This	proof	by	contradiction	demonstrates	that	all	solutions	to	𝑛! + 𝑛 + 1	must	be	
odd.	∎		
	
	
	 	



(4)	Prove	that	every	odd	natural	number	is	of	one	of	the	forms	4n	+	1	or		
4n	+	3,	where	n	is	an	integer.	
	
Expressed	symbolically:	
	

∀𝑥 ∈ ℕ 2| 𝑥 + 1 ⇒ ∃𝑛 ∈ ℤ 𝑥 = 4𝑛 + 1 ∨ 𝑥 = 4𝑛 + 3 	
	
I	will	prove	this	by	demonstrating	that	odd	numbers	can	be	divided	into	two	
mutually	exclusive	classes,	and	that	each	class	leads	to	one	of	these	solutions.	
	
Every	odd	number	can	be	expressed	as	2𝑘 + 1,	for	any	integer	𝑘.	The	integer	𝑘	itself	
can	either	be	even	or	odd.	
	
If	𝑘	is	even,	represent	it	by	2𝑛,	for	some	integer	𝑛.	Substituting	this	into	the	
definition	of	an	odd	number	 2𝑘 + 1 ,	it	follows	that	the	odd	number	is:		
	

2 2𝑛 + 1 = 4𝑛 + 1	
	
4𝑛 + 1	is	one	of	the	two	target	expressions.	This	shows	that	some	odd	numbers	can	
be	represented	by	4𝑛 + 1.	
	
On	the	other	hand,	if	the	original	𝑘	is	not	even,	then	it	must	be	odd,	expressed	as	
2𝑛 + 1,	for	some	integer	𝑛.	Substituting	this	into	the	definition	of	an	odd	number	
2𝑘 + 1 ,	it	follows	that	the	original	odd	number	is:	
	

2 2𝑛 + 1 + 1 = 4𝑛 + 3	
	
4𝑛 + 3	is	the	other	target	expression.	This	shows	that	all	numbers	that	did	not	fall	
into	the	first	class	of	numbers	(𝑘	is	even)	satisfy	this	alternate	(𝑘	is	odd)	target	
expression.	
	
I	have	demonstrated	that	all	odd	numbers	can	be	represented	as	either	4𝑛 + 1	or	
4𝑛 + 3.	This	proves	the	theorem.	∎		
	
	
	 	



(5)	Prove	that	for	any	integer	n,	at	least	one	of	the	integers	n,	n	+	2,	n	+	4	is	
divisible	by	3.	
	

∀𝑛 ∈ ℤ ∃𝑥 ∈ ℤ 3𝑥 = 𝑛 ∨ 3𝑥 = 𝑛 + 2 ∨ 3𝑥 = 𝑛 + 4 	
	
I	will	prove	this	by	demonstrating	this	follows	an	analogy	with	even	and	odd	
numbers,	and	then	show	that	all	possible	variants	lead	to	one	of	these	three	results.	
	
We	know	that	all	numbers	are	either	even	or	odd.	This	means	they	are	either	
divisible	by	two,	or	they	are	not.	Even	and	odd	numbers	are	represented	by	 2𝑘 	or	
2𝑘 + 1 	respectively,	where	𝑘	is	an	integer.	
	
The	same	applies	to	numbers	divisible	by	three.	They	are	either	“even”	(divisible	by	
three),	or	“odd”	(not	divisible	by	three).	The	difference	is	that	there	are	two	classes	
of	“odd”	numbers.	The	“even”	class	is	represented	by	 3𝑘 ,	and	the	two	“odd”	classes	
are	represented	by	 3𝑘 + 1 	and	 3𝑘 + 2 .	
	
I	will	examine	each	of	these	three	classes,	and	show	that	they	each	lead	to	one	of	the	
expressions	above.	In	each	case	I	will	substitute	the	class	into	one	of	the	three	forms	
in	the	proposition	and	show	that	it	is	divisible	by	three.	
	

i) The	“even”	class	 3𝑘 :	Substitute	this	into	𝑛	for	the	case	 3𝑥 = 𝑛 ,	which	
gives	3𝑥 = 3𝑘.	This	has	an	integer	solution,	therefore	 3𝑥 = 𝑛 	works	for	
this	class	of	numbers	which	is	divisible	by	three.	

	
ii) The	first	“odd”	class	 3𝑘 + 1 :	Substitute	this	into	𝑛	for	 3𝑥 = 𝑛 + 2 ,	

giving	3𝑥 = 3𝑘 + 3.	This	reduces	to	𝑥 = 𝑘 + 1,	which	clearly	has	an	
integer	solution.	Therefore	 3𝑥 = 𝑛 + 2 	works	for	this	class	of	number	
which	is	not	divisible	by	three.	

	
iii) The	other	“odd”	class	 3𝑘 + 2 :	Substitute	this	into	𝑛	for	 3𝑥 = 𝑛 + 4 ,	

giving	3𝑥 = 3𝑘 + 6.	This	reduces	to	𝑥 = 𝑘 + 2,	which	again	clearly	has	an	
integer	solution.	Therefore	 3𝑥 = 𝑛 + 4 	works	for	this	alternative	class	
of	number	which	is	not	divisible	by	three.	

	
For	every	possible	type	of	number	in	relation	to	its	divisibility	by	three,	each	of	
them	has	been	shown	to	be	represented	by	 3𝑥 = 𝑛 ,	 3𝑥 = 𝑛 + 2 	or	 3𝑥 = 𝑛 + 4 .	
Thus	the	theorem	is	proved.	∎		
	
	 	



(6)	A	classic	unsolved	problem	in	number	theory	asks	if	there	are	infinitely	
many	pairs	of	‘twin	primes’,	pairs	of	primes	separated	by	2,	such	as	3	and	5,	11	
and	13,	or	71	and	73.	Prove	that	the	only	prime	triple	(i.e.	three	primes,	each	2	
from	the	next)	is	3,	5,	7.	
	
This	theorem	has	essentially	been	proven	in	the	previous	question	(5).	The	proof	is	
as	follows:	
	
No	consecutive	numbers	 𝑝, 𝑝 + 1 	will	ever	be	prime,	because	in	any	two	
consecutive	numbers	one	of	them	will	always	be	even,	meaning	divisible	by	two,	
and	thus	not	prime.	
	
The	question	suggests	there	may	be	infinitely	many	pairs	of	“twin	primes”,	meaning	
𝑝, 𝑝 + 2 .	
	
A	“prime	triple”	consists	of	the	consecutive	numbers	 𝑝, 𝑝 + 2, 𝑝 + 4 .	In	the	
question	(5)	on	this	exam,	I	just	proved	that	one	of	these	numbers	must	be	divisible	
by	3.	Therefore	no	such	set	of	three	consecutive	numbers	can	be	prime.	
	
The	only	exception	is	the	set	 3,5,7 .	While	the	first	number	(3)	is	of	course	divisible	
by	3,	its	factors	are	1	and	3	itself,	so	it	is	by	definition	prime.	
	
Therefore	the	only	“prime	triple”	that	contains	only	prime	numbers	is	the	set	
3,5,7 .	The	theorem	is	therefore	proved	to	be	true.	∎		
	
	 	



(7)	Prove	that	for	any	natural	number	𝒏,	𝟐+ 𝟐𝟐 + 𝟐𝟑 +⋯+ 𝟐𝒏 = 𝟐𝒏!𝟏 − 𝟐	
	
This	is	better	represented	as	the	summation:	
	

2! = 2!!! − 2
!

!!!

	

	
I	will	prove	this	is	true	using	the	principle	of	mathematical	induction.	
	
First	I	must	prove	that	it	is	true	for	a	single	case,	the	one	at	the	beginning	of	the	
sequence.	So	I	will	show	the	statement	is	true	for	𝑛 = 1:	
	

2! = 2! − 2	
We	can	see	that:	

2 = 4− 2	
	
Therefore	the	proposition	is	true	for	𝑛 = 1.	
	
Now	I	will	use	basic	algebra	to	show	that	if	the	proposition	is	true	for	any	𝑛 = 𝑘,	
then	it	must	also	be	true	for	𝑛 = 𝑘 + 1.	
	
By	definition,	the	sum	of	series	up	to	term	𝑘 + 1	is	the	sum	of	the	series	up	to	𝑘,	plus	
the	next,	or 𝑘 + 1 ’th,	term.	Therefore:	
	

2! =  2! +
!

!!!

 2!!!
!!!

!!!

	

	
If	the	theorem	is	true,	then	the	left	side	can	be	solved:	
	

2! = 2 !!! !! − 2 = 2! − 2
!!!

!!!

	

	
Since	we	assume	the	theorem	is	true	for	some	𝑛 = 𝑘,	we	know	that		
	

2! = 2!!! − 2
!

!!!

	

	
The	right	hand	side	is	therefore:	
	

 2! +
!

!!!

 2!!! = 2!!! − 2 + 2!!!	



	
2!!! − 2 + 2!!! = 2!!! + 2!!! − 2	

	
2!!! + 2!!! − 2 = 2 2!!! − 2	

	
2 2!!! − 2 = 2! − 2	

This	means	that:	

 2! +
!

!!!

 2!!! = 2! − 2	

	
But	we	already	showed	that	the	left	side	was:	
	

2! = 2! − 2
!!!

!!!

	

	
The	left	hand	side	is	therefore	the	same	as	the	right	hand	side.	
	
We	have	shown	the	proposition	is	true	for	𝑛 = 1,	and	that	if	it	is	true	for	any	𝑛 = 𝑘	
then	it	is	always	true	for	𝑛 = 𝑘 + 1.	Therefore	the	theorem	is	true	by	the	principle	of	
mathematical	induction.	∎	
	 	



(8)	Prove	(from	the	definition	of	a	limit	of	a	sequence)	that	if	the	sequence	
𝒂𝒏 𝒏!𝟏

! 	tends	to	limit	𝑳	as	𝒏 → ∞,	then	for	any	fixed	number	𝑴 > 𝟎,	the	
sequence	 𝑴 ∙ 𝒂𝒏 𝒏!𝟏

! 	tends	to	the	limit	𝑴 ∙ 𝑳.	
	
The	definition	of	the	limit	of	a	sequence	can	be	written	symbolically	as:	
	

 𝑎! → 𝐿  as  𝑛 → ∞⟺ ∀𝜖 > 0 ∃𝑛 ∈ ℕ ∀𝑚 > 𝑛 𝑎! − 𝐿 < 𝜖 	
	
We	are	asked	to	prove	that:	
	

𝑎! → 𝐿  as  𝑛 → ∞⟺ ∀𝜖! > 0 ∃𝑛 ∈ ℕ ∀𝑚 > 𝑛 𝑀 ∙ 𝑎! −𝑀 ∙ 𝐿 < 𝜖! 	
	
From	the	definition,	we	know	when	the	limit	conditions	are	met	that:	
	

𝑎! − 𝐿 < 𝜖	
	
If	we	multiply	that	through	by	𝑀,	we	get:	
	

𝑀 ∙ 𝑎! −𝑀 ∙ 𝐿 < 𝑀 ∙ 𝜖	
	
Since	we	are	working	with	all	𝜖,	if	we	set	𝜖! = 𝑀 ∙ 𝜖,	then	we	get:	
	

∀𝜖! > 0 ∃𝑛 ∈ ℕ ∀𝑚 > 𝑛 𝑀 ∙ 𝑎! −𝑀 ∙ 𝐿 < 𝜖! 	
	
This	is	what	we	are	trying	to	prove. ∎		
	
	
	
	
	
	 	



(9)	Given	an	infinite	collection	𝑨𝒏, 𝒏 = 𝟏,𝟐,… ,∞	of	intervals	of	the	real	line,	
their	intersection	is	defined	to	be	

𝑨𝒏 = 𝒙| ∀𝒏 𝒙 ∈ 𝑨𝒏

!

𝒏!𝟏

	

	
Give	an	example	of	a	family	of	intervals	𝑨𝒏, 𝒏 = 𝟏,𝟐,… ,∞	such	that	𝑨𝒏!𝟏 ⊂ 𝑨𝒏	
for	all	𝒏	and	 𝑨𝒏 = ∅!

𝒏!𝟏 .	Prove	that	your	example	has	the	stated	property.	
	
We	have	an	infinite	collection	of	intervals,	each	of	which	is	supposed	to	be	a	proper	
subset	of	the	previous	one.	The	intersection	of	a	set	and	its	subset	is	always	the	
subset.	Therefore	the	intersection	of	all	the	intervals	is	simply	the	last	interval	in	the	
sequence.	When	intersection	of	all	the	intervals	becomes	the	empty	set,	the	last	
interval	must	itself	be	the	empty	set.	There	can	be	no	subsequent	intervals	because	
there	is	no	proper	subset	of	the	empty	set.	
	
I	therefore	think	there	is	no	correct	answer	to	this	question.	However,	I	will	make	
two	attempts	that	come	close	to	a	correct	answer.	
	
First,	let	us	define	each	interval	𝐴!	as	the	open	interval	of	real	numbers	 0,

!
!
.	Each	

subsequent	interval	will	be	a	proper	subset	of	the	one	before	it.	The	completeness	
property	of	the	real	numbers	tells	us	that	these	intervals	will	go	on	forever.	Now,	if	
we	imagine	that	infinity	actually	exists,	at	that	point	we	will	reach	the	open	interval	
(0,0)	and	the	intersection	of	all	these	sets	will	be	the	empty	set.	This	definition	of	a	
family	of	intervals	therefore	has	the	stated	property.	
	
Alternatively,	for	any	natural	number	𝑚,	let	us	define	each	interval	𝐴!	as	the	closed	
interval	of	real	numbers	 0,𝑚 − 𝑛 .	We	will	define	an	interval	with	its	bounds	in	the	
wrong	order	as	being	empty.	After	𝑛	reaches	𝑚,	all	subsequent	intervals,	and	
therefore	their	intersection,	will	be	the	null	set.		
	
This	is	true	for	any	integer	𝑚	that	we	choose.	We	can	express	this	as:	
	

∀𝑚 ∈ ℕ ∀𝐴! = 𝑖 !!!!!! 𝐴! =
!

!!!

∅ 	

	
This	satisfies	the	question	if	we	ignore	the	fact	that	that	there	is	no	proper	subset	of	
the	null	set.	
	
I	have	provided	two	tentative	answers	to	this	question,	one	of	which	violates	the	
meaning	of	infinity	and	the	other	violates	the	meaning	of	a	proper	subset.	That	is	the	
best	I	can	do.	
	
	



(10)	Give	an	example	of	a	family	of	intervals	𝑨𝒏, 𝒏 = 𝟏,𝟐,… ,∞	such	that	
𝑨𝒏!𝟏 ⊂ 𝑨𝒏	for	all	𝒏	and	 𝑨𝒏!

𝒏!𝟏 	consists	of	a	single	real	number.	Prove	that	
your	example	has	the	stated	property.	
	
Here	we	have	the	same	problem	as	in	question	(9).	If	the	intersection	of	all	the	sets	
is	a	single	real	number,	then	the	last	interval	also	consists	of	a	single	real	number.	
There	cannot	be	any	subsequent	intervals	that	are	proper	subsets,	which	violates	
the	condition	that	there	are	an	infinite	number	of	intervals.	
	
I	will	answer	the	question	by	taking	a	dubious	literal	interpretation	of	the	concept	of	
infinity.	
	
Define	each	interval	𝐴!	as	the	closed	interval	of	real	numbers	 0,

!
!
.	Each	

subsequent	interval	will	be	a	proper	subset	of	the	one	before	it.	The	completeness	
property	of	the	real	numbers	tells	us	that	these	intervals	will	go	on	forever.	Now,	
given	that	we	are	imagining	that	infinity	actually	exists,	at	that	point	we	will	reach	
the	closed	interval	[0,0]	and	the	intersection	of	all	these	sets	will	be	the	single	real	
number	zero.	We	have	therefore	met	the	conditions	required	in	the	question	–	each	
interval	is	a	subset	of	the	previous	interval,	and	it	ends	(at	infinity)	with	a	single	real	
number.	
	
	
	


